Prediction of Cooling Energy Consumption in Hotel Building Using Machine Learning Techniques
نویسندگان
چکیده
منابع مشابه
Gene Prediction Using Machine Learning Techniques
The basic purpose of the research work aims at predicting the genes of interest in molecular sequence databases using machine learning techniques like neural networks, decision trees, data mining, hidden markov models etc The primary focus of the research will be on proposing new or improving already existing ab initio and homology based methods for gene prediction. The proposed methods will be...
متن کاملBuilding Energy Consumption Prediction: An Extreme Deep Learning Approach
Building energy consumption prediction plays an important role in improving the energy utilization rate through helping building managers to make better decisions. However, as a result of randomness and noisy disturbance, it is not an easy task to realize accurate prediction of the building energy consumption. In order to obtain better building energy consumption prediction accuracy, an extreme...
متن کاملEstimation and Prediction of Residential Building Energy Consumption in Rural Areas of Chongqing
Energy simulation is a vital part of energy policy of a country, especially for a developing country like China where energy consumption is growing very rapidly. The present study has been conducted to simulate the total primary energy consumption in residential sector in rural areas in Chongqing by using macro and micro drivers including population size, number of households, persons per house...
متن کاملEvaluation of Machine Learning Techniques for Green Energy Prediction
We evaluate Machine Learning techniques for Green energy (wind, solar and biomass) prediction based on weather forecasts. Weather is constituted by multiple attributes: temperature, cloud cover, wind speed / direction which are discrete random variables. One of our objectives is to predict the weather based on the previous weather data. Additionally we are interested in finding correlation (dep...
متن کاملPrediction of building energy consumption by using artificial neural networks
In this study, the main objective is to predict buildings energy needs benefitting from orientation, insulation thickness and transparency ratio by using artificial neural networks. A backpropagation neural network has been preferred and the data have been presented to network by being normalized. The numerical applications were carried out with finite difference approach for brick walls with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2020
ISSN: 1996-1073
DOI: 10.3390/en13236226